Limits & Continuity

Short Answer: Show all work. Unless stated otherwise, no calculator permitted.

1. Explain in your own words what is meant by the equation $\lim_{x\to 2} f(x) = 4$. Is it possible for this statement to be true and yet f(2) = 5? Explain. What graphical manifestation would f(x) have at x = 2? Sketch a possible graph of f(x).

2. Explain what it means to say that $\lim_{x\to 1^+} f(x) = 3$ and $\lim_{x\to 1^+} f(x) = 6$. What graphical manifestation would f(x) have at x=1? Sketch a possible graph of f(x).

3. Explain the meaning of each of the following, then sketch a possible graph of a function exhibiting the indicated behavior.

(a)
$$\lim_{x \to -2} f(x) = \infty$$

(b)
$$\lim_{x \to -3^+} g(x) = -\infty$$
.

4. For $f(x) = \frac{x^2 + x - 20}{x^2 - 16}$, algebraically determine the following:

(a)
$$f(4)$$

(b)
$$\lim_{x \to 4^-} f(x)$$

(c)
$$\lim_{x \to 4^+} f(x)$$

(d)
$$\lim_{x\to 4} f(x)$$

(e)
$$\lim_{x \to -4} f(x)$$

(f)
$$\lim_{x\to 0^-} f(x)$$

(g)
$$\lim_{x \to 1} f(x)$$

(h)
$$\lim_{x \to -1} f(x)$$

- 5. Using the definition of continuity, determine whether the graph of $f(x) = \frac{x^2 + x}{x^3 + 2x^2 3x}$ is continuous at the following. Justify.
- (a) x = 0

(b) x=1

(c) x=2

- 6. For $f(x) = \begin{cases} -x^2, & x < 0 \\ 0.001, & x = 0 \end{cases}$, algebraically determine the following: $\sqrt{x}, & x > 0$ (a) f(0) (b) $\lim_{x \to 0^-} f(x)$ (c) $\lim_{x \to 0^+} f(x)$ (d) $\lim_{x \to 0} f(x)$ (e) continuity of f at x = 0. Justify.

- 7. Evaluate each of the following continuous functions at the indicated x-value: (a) $\lim_{x\to 6} \sin \theta =$ (b) $\lim_{x\to 6} 2^x =$ (c) $\lim_{x\to 0} \left(57x^{85} 2x^{45} + 100x^{11} 99999x + 5\right) =$
 - (a) $\lim_{\theta \to \frac{11\pi}{6}} \sin \theta =$
- (b) $\lim_{x\to 6} 2^x =$

- 8. Evaluate each of the following:
 - (a) $\lim \tan x =$ $x \rightarrow \frac{\pi}{2}$

- (b) $\lim_{x \to \frac{\pi}{2}^+} \tan x =$

(d) $\lim_{x \to -5^{-}} \frac{-2}{x+5} =$

- (e) $\lim_{x \to -5^+} \frac{-2}{x+5} =$

9. For the function f whose graph is given at below, evaluate the following, if it exists. If it does not exist, explain why.

(a)
$$\lim_{x\to 3} f(x) =$$

(b)
$$\lim_{x\to 7} f(x) =$$

(c)
$$\lim_{x\to -4} f(x) =$$

$$(d) \lim_{x \to -9^{-}} f(x) =$$

(e)
$$\lim_{x \to -9^+} f(x) =$$

(f)
$$\lim_{x\to -9} f(x) =$$

- (g) What are the equations of the vertical asymptotes?
- 10. A patient receives a 150-mg injection of a drug every four hours. The graph at right shows the amount C(t) of the drug in the bloodstream after t hours. Approximate $\lim_{t\to 12^-} C(t)$ and $\lim_{t\to 12^+} C(t)$, then explain in a complete sentence the significance/meaning of these one-sided limits in terms of the injections at t=12 hours.

11. (Calculator Permitted) Sketch the graph of the function $f(x) = \frac{1}{1+2^{1/x}}$ in the space below, then evaluate each, if it exists. If it does not exist, explain why. Name the type and location of any discontinuity.

(a)
$$\lim_{x\to 0^-} f(x) =$$

(b)
$$\lim_{x \to 0^+} f(x) =$$
 (c) $\lim_{x \to 0} f(x) =$

(c)
$$\lim_{x\to 0} f(x) =$$

(d)
$$f(0) =$$

12. Using the definition of continuity at a point, discuss the continuity of the following function. Justify.

$$f(x) = \begin{cases} 2 - x, & x < -1 \\ x, & -1 \le x < 1 \\ (x - 1)^2, & x \ge 1 \end{cases}$$

13. For $f(x) = \begin{cases} 3ax & b, & x < 1 \\ 5, & x = 1, \text{ find the values of } a \text{ and } b \text{ such that } f(x) \text{ is continuous at } x = 1. \text{ Show } \\ 2a\sqrt{x} + b, & x > 1 \end{cases}$ the work that leads to your answer,

14. (Calculator permitted) Fill in the table for the following function, then use the numerical evidence (to 3 decimal places) to evaluate the indicated limit. (Be sure you're in radian mode)

$$f(x) = \frac{\sin(3x)}{x}$$

х	-0.1	-0.01	-0.001	0	0.001	0.01	0.1
f(x)			-		***************************************	THE PARTY OF THE P	
			-				

Based on the numeric evidence above, $\lim_{x\to 0} f(x) =$

Multiple Choice: Put the Capital Letter of the correct answer in the blank to the left of the number. Be sure to show any work/analysis.

 $\lim_{x \to 0^{-}} \left(1 - \frac{1}{x} \right) =$

(A) 1

(B)2

 $(C) -\infty$

(D) 0

 $(E) \infty$

_____ 16. Find $\lim_{x \to 1} f(x)$ if $f(x) = \begin{cases} 3 - x, & x \neq 1 \\ 1, & x = 1 \end{cases}$

(A) 2 (B) 1 (C) $\frac{3}{2}$

(D) 0

(E) DNE

17. For which of the following does $\lim_{x\to 4} f(x)$ exist?

I.

П.

Ш.

- (A) I only
- (B) II only
- (C) III only
- (D) I and II only
- (E) I and III only

18. If $f(x) = \begin{cases} \ln x, & 0 < x \le 2 \\ x^2 \ln 2, & 2 < x \le 4 \end{cases}$, then $\lim_{x \to 2} f(x)$ is

- (A) ln 2
- (B) ln8
- (C) ln 16
- (D) 4
- (E) nonexistent

Use the graph of f(x) above to answer questions 19 - 22.

_____19.
$$\lim_{x\to 7} f(x) =$$

(A) 1

(B) 2

(C) -1

(D)4

(E) DNE

$$\underline{\hspace{1cm}}$$
 20. $\lim_{x\to 0^-} f(x) =$

(A) 1

(B) 2

(C) -1

(D) 4:

(E) DNE

$$21. \lim_{x\to 2} f(x) =$$

(A)-2

(B) 3

(C) -1

(D) 4

(E) DNE

_____22. Which of the following regarding f(x) at x = 5 true?

$$\lim_{x\to 5^-} f(x) = 3$$

$$\prod_{x\to 5^+} f(x) = f(5)$$

III. f(x) is continuous at x=5

(A) I only (B) II only (C) I and II only (D) II and III only (E) I, II, and III

23. If
$$f(x) = \begin{cases} ae^x + b, & x < 0 \\ 4, & x = 0, \text{ then the value of } b \text{ that makes } f(x) \text{ continuous at } x = 0 \text{ is} \\ bx & 2a, & x > 0 \end{cases}$$
(A) 2 (B) 2 (C) 4 (D) 6 (E) no such value exists

24. If
$$f(x) = \frac{1}{x-2}$$
 and $\lim_{x \to (-k+1)} f(x)$ does not exist, then $k = (A) 2$ (B) 3 (C) 1 (D) -2 (E) -1

_____ 25. The function
$$f(x) = \begin{cases} \frac{x^2}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

- (A) is continuous for all x
- (B) has a removable point discontinuity at x = 0
- (C) has a non-removable oscillation discontinuity at x = 0
- (D) has an non-removable infinite discontinuity at x = 0
- (E) has a non-removable jump discontinuity at x = 0

26. If
$$f(x) = \begin{cases} \frac{x^2 - x}{2x}, & x \neq 0 \\ k, & x = 0 \end{cases}$$
 is continuous at $x = 0$, then $k = 0$

- (A) 1 (B) $\frac{1}{2}$ (C) 0 (D) $\frac{1}{2}$

(E) 1