(Find the derivative using limit process)

Use the limit process to find the slope of the graph of the function at the specified point $1.(x) = x^2 - 2x$, at (3,3)

2.
$$f(x) = 10x - 2x^2$$
, at (3,12)

3.
$$f(x) = \frac{1}{x-2}$$
, at $\left(4, \frac{1}{2}\right)$

4.
$$g(x) = \sqrt{x+10}$$
, at $(-1,3)$

Find the slope of the graph of f at the given point. Use the result to find an equation of the tangent line to the graph at the point.

5.
$$f(x) = x^2 - 1$$
, (2,3)

6.
$$g(x) = x^3 - x$$
, (2,6)

7.
$$h(x) = x^2 - 2x - 1$$
, (1,-2)

Tangent Lines and the Derivative

In exercises #1-4, use the limit process to find the slope of the graph of the function at the specified point.

1.
$$g(x) = 4 - 3x$$
, at (1, 1)

2.
$$g(x) = x^2 - 2x$$
, at (3, 3)

3.
$$g(x) = \frac{4}{x}$$
, at $(2, 2)$

4.
$$h(x) = \sqrt{x}$$
, at (9, 3)

In exercises 5 and 6:

a. Find the formula for the slope of the curve (general formula).

b. Then use the formula to find the slope at each of the points.

5.
$$g(x) = 4 - x^2$$
; at $(0, 4)$ and $(-1, 3)$

6.
$$g(x) = \frac{1}{x+4}$$
; at $\left(0, \frac{1}{4}\right)$ and $\left(-2, \frac{1}{2}\right)$

In exercises 7 and 8, find the derivative of the function.

7.
$$g(x) = 6 - \frac{2}{3}x$$

$$8. \quad f(x) = \frac{1}{x^2}$$

In exercises 9 and 10, find the slope of the graph of f at the given point. Use the result to find the <u>equation</u> of the tangent line to the graph at the point. Use your graphing calculator to draw a sketch of f and the tangent line.

9.
$$f(x) = x^3 - x$$
; (2, 6)

10.
$$f(x) = \sqrt{x+1}$$
; (3, 2)